Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Fractals ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2301332

ABSTRACT

In this paper, we study a nonlinear mathematical model which addresses the transmission dynamics of COVID-19. The considered model consists of susceptible (S), exposed (E), infected (I), and recovered (R) individuals. For simplicity, the model is abbreviated as SEIR. Immigration rates of two kinds are involved in susceptible and infected individuals. First of all, the model is formulated. Then via classical analysis, we investigate its local and global stability by using the Jacobian matrix and Lyapunov function method. Further, the fundamental reproduction number ℛ0 is computed for the said model. Then, we simulate the model through the Runge–Kutta method of order two abbreviated as RK2. Finally, we switch over to the fractional order model and investigate its numerical simulations corresponding to different fractional orders by using the fractional order version of the aforementioned numerical method. Finally, graphical presentations are given for the approximate solution of various compartments of the proposed model. Also, a comparison with real data has been shown. [ FROM AUTHOR] Copyright of Fractals is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Math Methods Appl Sci ; 2021 Aug 22.
Article in English | MEDLINE | ID: covidwho-2303456

ABSTRACT

In the current article, we aim to study in detail a novel coronavirus (2019-nCoV or COVID-19) mathematical model for different aspects under Caputo fractional derivative. First, from analysis point of view, existence is necessary to be investigated for any applied problem. Therefore, we used fixed point theorem's due to Banach's and Schaefer's to establish some sufficient results regarding existence and uniqueness of the solution to the proposed model. On the other hand, stability is important in respect of approximate solution, so we have developed condition sufficient for the stability of Ulam-Hyers and their different types for the considered system. In addition, the model has also been considered for semianalytical solution via Laplace Adomian decomposition method (LADM). On Matlab, by taking some real data about Pakistan, we graph the obtained results. In the last of the manuscript, a detail discussion and brief conclusion are provided.

3.
Math Methods Appl Sci ; 2021 Feb 03.
Article in English | MEDLINE | ID: covidwho-2290719

ABSTRACT

In this manuscript, the mathematical model of COVID-19 is considered with eight different classes under the fractional-order derivative in Caputo sense. A couple of results regarding the existence and uniqueness of the solution for the proposed model is presented. Furthermore, the fractional-order Taylor's method is used for the approximation of the solution of the concerned problem. Finally, we simulate the results for 50 days with the help of some available data for fractional differential order to display the excellency of the proposed model.

4.
Eng Anal Bound Elem ; 146: 473-482, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2086162

ABSTRACT

In this study, the nonlinear mathematical model of COVID-19 is investigated by stochastic solver using the scaled conjugate gradient neural networks (SCGNNs). The nonlinear mathematical model of COVID-19 is represented by coupled system of ordinary differential equations and is studied for three different cases of initial conditions with suitable parametric values. This model is studied subject to seven class of human population N(t) and individuals are categorized as: susceptible S(t), exposed E(t), quarantined Q(t), asymptotically diseased IA (t), symptomatic diseased IS (t) and finally the persons removed from COVID-19 and are denoted by R(t). The stochastic numerical computing SCGNNs approach will be used to examine the numerical performance of nonlinear mathematical model of COVID-19. The stochastic SCGNNs approach is based on three factors by using procedure of verification, sample statistics, testing and training. For this purpose, large portion of data is considered, i.e., 70%, 16%, 14% for training, testing and validation, respectively. The efficiency, reliability and authenticity of stochastic numerical SCGNNs approach are analysed graphically in terms of error histograms, mean square error, correlation, regression and finally further endorsed by graphical illustrations for absolute errors in the range of 10-05 to 10-07 for each scenario of the system model.

5.
Results Phys ; 33: 105103, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1586713

ABSTRACT

This research study consists of a newly proposed Atangana-Baleanu derivative for transmission dynamics of the coronavirus (COVID-19) epidemic. Taking the advantage of non-local Atangana-Baleanu fractional-derivative approach, the dynamics of the well-known COVID-19 have been examined and analyzed with the induction of various infection phases and multiple routes of transmissions. For this purpose, an attempt is made to present a novel approach that initially formulates the proposed model using classical integer-order differential equations, followed by application of the fractal fractional derivative for obtaining the fractional COVID-19 model having arbitrary order Ψ and the fractal dimension Ξ . With this motive, some basic properties of the model that include equilibria and reproduction number are presented as well. Then, the stability of the equilibrium points is examined. Furthermore, a novel numerical method is introduced based on Adams-Bashforth fractal-fractional approach for the derivation of an iterative scheme of the fractal-fractional ABC model. This in turns, has helped us to obtained detailed graphical representation for several values of fractional and fractal orders Ψ and Ξ , respectively. In the end, graphical results and numerical simulation are presented for comprehending the impacts of the different model parameters and fractional order on the disease dynamics and the control. The outcomes of this research would provide strong theoretical insights for understanding mechanism of the infectious diseases and help the worldwide practitioners in adopting controlling strategies.

6.
Chaos, Solitons & Fractals ; 150:111133, 2021.
Article in English | ScienceDirect | ID: covidwho-1283263

ABSTRACT

In this mathematical research paper, we analyze in detail the basic SIQR epidemic model. We calculate its reproductive value R0, equilibrium points and analyze the stability of the SIQR system by using Routh-Hurwitz criterion in detail. We also find out the bifurcation value of the SIQR epidemic model by using Routh-Hurwitz criterion. Also, SIQR system is solved numerically by using four different mathematical techniques that are forward Euler scheme, Runge-Kutta (RK-4) method, variational iteration method and nonstandard finite difference scheme (NSFD). Analytical and graphical calculations show that the NSFD method preserves all the important conditions of the basic SIQR epidemic model while the rest three techniques fail to preserve the essential conditions of the system. Convergence analysis of the NSFD scheme has also been performed.

7.
Results Phys ; 24: 104046, 2021 May.
Article in English | MEDLINE | ID: covidwho-1144914

ABSTRACT

This manuscript addressing the dynamics of fractal-fractional type modified SEIR model under Atangana-Baleanu Caputo (ABC) derivative of fractional order y and fractal dimension p for the available data in Pakistan. The proposed model has been investigated for qualitative analysis by applying the theory of non-linear functional analysis along with fixed point theory. The fractional Adams-bashforth iterative techniques have been applied for the numerical solution of the said model. The Ulam-Hyers (UH) stability techniques have been derived for the stability of the considered model. The simulation of all compartments has been drawn against the available data of covid-19 in Pakistan. The whole study of this manuscript illustrates that control of the effective transmission rate is necessary for stoping the transmission of the outbreak. This means that everyone in the society must change their behavior towards self-protection by keeping most of the precautionary measures sufficient for controlling covid-19.

8.
Results Phys ; 21: 103811, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1036233

ABSTRACT

The outburst of the pandemic Coronavirus disease since December 2019, has severely impacted the health and economy worldwide. The epidemic is spreading fast through various means, as the virus is very infectious. Medical science is exploring a vaccine, only symptomatic treatment is possible at the moment. To contain the virus, it is required to categorize the risk factors and rank those in terms of contagion. This study aims to evaluate risk factors involved in the spread of COVID-19 and to rank them. In this work, we applied the methodology namely, Fuzzy Analytic Hierarchy Process (FAHP) to find out the weights and finally Hesitant Fuzzy Sets (HFS) with Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to identify the major risk factor. The results showed that "long duration of contact with the infected person" the most significant risk factor, followed by "spread through hospitals and clinic" and "verbal spread". We showed the appliance of the Multi Criteria Decision Making (MCDM) tools in evaluation of the most significant risk factor. Moreover, we conducted sensitivity analysis.

9.
Results Phys ; 21: 103813, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1032742

ABSTRACT

Coronavirus is a pandemic that has become a concern for the whole world. This disease has stepped out to its greatest extent and is expanding day by day. Coronavirus, termed as a worldwide disease, has caused more than 8 lakh deaths worldwide. The foremost cause of the spread of coronavirus is SARS-CoV and SARS-CoV-2, which are part of the coronavirus family. Thus, predicting the patients suffering from such pandemic diseases would help to formulate the difference in inaccurate and infeasible time duration. This paper mainly focuses on the prediction of SARS-CoV and SARS-CoV-2 using the B-cells dataset. The paper also proposes different ensemble learning strategies that came out to be beneficial while making predictions. The predictions are made using various machine learning models. The numerous machine learning models, such as SVM, Naïve Bayes, K-nearest neighbors, AdaBoost, Gradient boosting, XGBoost, Random forest, ensembles, and neural networks are used in predicting and analyzing the dataset. The most accurate result was obtained using the proposed algorithm with 0.919 AUC score and 87.248% validation accuracy for predicting SARS-CoV and 0.923 AUC and 87.7934% validation accuracy for predicting SARS-CoV-2 virus.

10.
Results Phys ; 21: 103784, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1009843

ABSTRACT

This article focus the elimination and control of the infection caused by COVID-19. Mathematical model of the disease is formulated. With help of sensitivity analysis of the reproduction number the most sensitive parameters regarding transmission of infection are found. Consequently strategies for the control of infection are proposed. Threshold condition for global stability of the disease free state is investigated. Finally, using Matlab numerical simulations are produced for validation of theocratical results.

11.
Results Phys ; 21: 103771, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-989171

ABSTRACT

In the present study, a nonlinear delayed coronavirus pandemic model is investigated in the human population. For study, we find the equilibria of susceptible-exposed-infected-quarantine-recovered model with delay term. The stability of the model is investigated using well-posedness, Routh Hurwitz criterion, Volterra Lyapunov function, and Lasalle invariance principle. The effect of the reproduction number on dynamics of disease is analyzed. If the reproduction number is less than one then the disease has been controlled. On the other hand, if the reproduction number is greater than one then the disease has become endemic in the population. The effect of the quarantine component on the reproduction number is also investigated. In the delayed analysis of the model, we investigated that transmission dynamics of the disease is dependent on delay terms which is also reflected in basic reproduction number. At the end, to depict the strength of the theoretical analysis of the model, computer simulations are presented.

12.
Results Phys ; 19: 103560, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-919530

ABSTRACT

This work is the consideration of a fractal fractional mathematical model on the transmission and control of corona virus (COVID-19), in which the total population of an infected area is divided into susceptible, infected and recovered classes. We consider a fractal-fractional order SIR type model for investigation of Covid-19. To realize the transmission and control of corona virus in a much better way, first we study the stability of the corresponding deterministic model using next generation matrix along with basic reproduction number. After this, we study the qualitative analysis using "fixed point theory" approach. Next, we use fractional Adams-Bashforth approach for investigation of approximate solution to the considered model. At the end numerical simulation are been given by matlab to provide the validity of mathematical system having the arbitrary order and fractal dimension.

SELECTION OF CITATIONS
SEARCH DETAIL